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ABSTRACT 

The development of a formalism for the magnetic and thermal prop- 

erties of the Heisenberg ferromagnet in an applied magnetic field is pre- 

sented. By the use of GreenFs function theory the magnetization and 

susceptibility a r e  determined in the random phase approximation. It is 

shown that the thermodynamic quantities can be expressed in analytical 

form for all temperatures, both above and below the Curie point. 

The object of this work is to evaluate the use of ferromagnetism in 

a refrigeration system. From the analytical results on magnetization 

and susceptibility, equations describing adiabatic and isothermal proc - 
esses are presented. Magnetization and entropy are presented as func - 
tions of temperature and field. 

:: Green’s Ekinction , Therrnodynkmics, Egtropy , Refrigeration, 

Critical point, Magnetocaloric effect 
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INTRODUCTION 

According to the W e i s s  theory a ferromagnetic body possess an in- 

ternal field which is proportional to the magnetization. As the tempera- 

ture  of a ferromagnet is increased, the magnetization decreases until, 

at a temperature known as the Curie temperature Tc, the sample be- 

comes paramagnetic. The process by which this change from ferro- 

magnetism to paramagnetism occurs is referred to as the ferromag- 

netic phase transition. Investigations have shown that electrical, me- 

chanical, and many thermodynamic properties of a material are altered 

when the material undergoes a phase transition. 

The effect of an external magnetic field is twofold: (1) the mag- 

netization is increased somewhat above its zero field value and (2) the 

critical point ceases to exist. Even though temperature tends to de- 

stroy this alinement, the field causes some ordering to be present. 

Thus instead of an abrupt disorder at the critical temperature there is 

a more gradual transition. 

This report is concerned with the investigation of the thermodynamic 

properties of the Heisenberg ferromagnet in an external magnetic field, 

The quantities studied are the magnetization, susceptibility and the de- 

rivative of magnetization with respect to temperature, Time last of these 

determines thermodynamic quantities such as entropy and adiabatic 

demagnetization (magneto - caloric effect), which are useful for  inves- 

tigating various recently proposed ref rigeration systems. 1- 2 

MODEL 

The Heisenberg model is based on a solid where the magnetic elec- 

trons are in states localized about the lattice sites with exchange inter- 
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actions between electrons taking place between nearest  neighbor pairs. 

The model does not take into account an itinerant electron picture. The 

model is thought to be very good for insulating ferromagnets such as 

EuO and poor for conductors such as iron and nickel. However, it ap- 

pears that this model gives better results for  conductors at low tem- 

peratures than those calculated from a band theory approach as shown 

by Arglye, Charap and Pugh. 

Heisenberg model with its surprising success does not take into account 

the spreading of the electronic energy levels into bands. 

It should be noted however, that the 

The Heisenberg ferromagnet with spin 1/2 was analyzed by Bogolyubov 
4 and Tyablikov using the techniques of double- time, temperature depend- 

ent Green's functions. A convenient review of Green*s functions and 

Tyablikov9s application of them to ferromagnetism is given by D. N. 

Zubarev and references contained therein. 5 

The Hamiltonian for  the Heisenberg model is 

where 

is the Bohr magneton, g the Lande g factor, Ho the applied magnetic 

field which is assumed to be along the z-direction, Si is the spin oper- 

a tor  for a spin at site i, and where J. is the exchange interaction 

between spins on sites i and j .  The sum is carried over all sites in 

the crystal. The exchange interaction is assumed to be a function only 

of the distance between sites. The self exchange te rms  such as Jii o r  

J.. vanish. 

1j 

1 3  
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CALCULATION OF THERMODYNAMIC QUANTIT 

Since the thermodynamic quantities of interest are the magnetization 

and entropy of the ystem, one is interested in evaluating the correlation 

functions of the form (t3-S') and hence of the Green's function 
g m  

Starting with the Green's function (( Sg; + S i  )) one can derive the 

The results correlation function in the random phase approximation 

are 

where 

and 

m 

The sum in equation (3) goes over all N lattice vectors in the first 

Brillouin zone. 

Application of a magnetic field is assumed sufficient to orient 

the net magnetization along the direction of the field. The field also in- 

troduces additional long-range order. The long-range order is thus due 

to the internal field and to the applied magnetic field. The average z 

component of the spin is a measure of this long-range order. The ther- 

mal average (S") is proportional to the magnetization. 
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To obtain the magnetization one calculates (Sz) by using the relation 

(s") = 1 
[I + 24PI 

where 

The sum in equation (6) must be evaluated over all values of k in the 

in zone of the appropriate lattice. Except at the very low- 

and high-temperature limits numerical methods are usually used. Such 

numerical solutions are, however, somewhat difficult. One of the pur- 

poses of this paper is to show that analytical solutions of equation (6) are 

possible, 

Consider only crystals with cubic symmetry such as bcc. One can 

replace the sum which appears in equation (6) by an integral. Using the 

same techniques developed by Flax and RaichGm8 one can obtain the mag- 

netization: 
1 

2A 
(s") =-  (7) 

where 

p =- CY + &  
2 

pBgHo - - -  Hq C Y =  
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K(k) = complete elliptic integral of first kind 

and 

The solution of (8) give as a function of temperature, magnetic field and 

magnetization. Hence by substituting equation (8) into equation (7) the 

magnetization is obtained. 

For  an adiabatic process, that is, when there is no change in en- 

tropy, 

where CH ibs the magnetic specific heat. Since for  a ferromagnet 

(a (SZ)/ar),, is negative, an increase in field produces an increase in 

temperature; moreover, the increase will  be expected to be largest  

near  the critical point. This is known as the magnetocaloric effect. 

The entropy, which is a measure of the order of the system, can be 

calculated from 
if 

r H’ 
S =  CH’ (5) dH” 

H’ 7 

The change of magnetization with respect to the reduced temperature 

can be derived from equation (5) as follows: 
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RESULTS AND DISCUSSION 

In the absence of an applied magnetic field the random phase ap- 

proximation predicts that the magnetization shows a second order tran- 

sition and has a critical temperature which can be written as 

(Ho = 0) 
kBTc 0.3589 = - 
J(0) 

where Tc is the Curie temperature. It is then feasible to relate Ho 

and H g  as follows: 

Figure 1 shows a plot of (Sz) as a function of temperature for  sev- 

eral values of H for a bcc lattice. When H9 equals zero there are no 

solutions for  (Sz) above a certain temperature Tc which is called the 

Curie temperature. This is the point where the long-range order would 

disappear and above this point there is complete disorder of the spins. 

When H' is not equal to zero the ferromagnetic transition occurs not at 

a single temperature, but over a range of temperatures forming a '?Curie 

region9q in which the transition is smeared out. This is marked by the 

appearance of a v9tail'T on the magnetization curve. The cause of the tail 

is that the long-range order persists because the spins feel the effect of 

an applied magnetic field. The higher the field the greater the broadening 

of the transition. 
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Figure 2 shows the values of the temperature change in the mag- 

netocaloric effect as a function of temperature. These results were de- 

rived from equations (15) and' (18). An expression for CH, which is re- 

quired in equation (15) was derived from the expression ( a E / a ~ ) ~ ,  where 

E is the enthalpy. The enthalpy is given by E = U - H(Sz)* Where U 

is the internal energy of the system, and can be found from a knowledge 

of the Hamiltonian. As indicated in figure 2, the magnetocaloric effect 

is largest in the neighborhood of the Curie temperature. The magnitude 

of the magnetocaloric effect is dependent on the internal magnetic field 

as well as the temperature. F o r  very large fields the magnetocaloric 

effect rises indefinitely as for  an ideal paramagnet. (Note that the lattice 

specific heat is not taken into account in this calculation). 

Figure 3 shows a plot of S as a function of temperature for several 

values of Hv ~ The curves show a characteristic behavior for ferromag- 

netic to paramagnetic transition. It is included here to illustrate that the 

entropy can be calculated for a ferromagnet as a function of temperature, 

magnetization and applied field. Such curves are useful for the design of 

refrigeration cycles e 
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